
J .  Fluid Mech.  (1987),  PO^. 171, p p .  299-312 

Printrd i n  Great Britain 

299 

Energy computations for evolution of class I and I1 
instabilities of Stokes waves 

By MICHAEL STIASSNIE 
Department of Civil Engineering, Terhnion, Haifa 32000, Israel 

AND LEV SHEMER 
Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel 

(Received 5 June 1985 and in revised form 6 January 1986) 

The modified Zakharov equation is used to study the coupled evolution of class I and 
class I1 instabilities of surface gravity waves on infinitely deep water. In  contrast 
to single class (I or 11) evolution, the coupled behaviour is non-periodic. Except for 
the very steep waves a dominance of class I modes over those of class I1 is observed. 
Energy calculations show that the Hamiltonian of the wave field considered is nearly 
constant. Thus the Zakharov and the modified Zakharov equations represent 
consistent approximations of the original water-wave problem. 

1. Introduction 
In  Stiassnie & Shemer (1984) we derived a modified version of the Zakharov 

integral equation for surface gravity waves. This version includes higher-order, class 
11, nonlinear interaction as well as the more familiar class I interaction. A linear 
stability analysis of the new equation was used to study some short-time aspects of 
class I and class I1 instabilities of a Stokes wave, yielding results in agreement with 
those of McLean (1982). 

1.1. Class I instability 

Wave flume experiments by Lake et al. (1977) have shown how the disturbances grew 
in time, reached a maximum and then subsided. Furthermore, the experiments 
showed how the unsteady wavetrain became, a t  some stage of its evolution, nearly 
uniform again. Yuen & Lake (1982) used a numerical solution of the Zakharov 
equation to show that the evolution may be recurring (Fermi-Pasta-Ulam recur- 
rence) or chaotic, depending on the choice of modes included in the calculation. 
Stiassnie & Kroszynski (1982) used the nonlinear Schrodinger equation to study 
analytically the evolution of a three-wave system, composed of a carrier and two 
initially small ' side-band ' disturbances. Their recurrence period (given by a simple 
formula) is in good agreement with the numerical results. For infinitely deep water 
the most unstable class I disturbances are in the direction of the carrier, so that the 
instability is essentially two-dimensional. 

1.2. Class I I  instability 
Experiments by Su (1982) and Su et al. (198%) have shown that an initial state of 
a two-dimensional wavetrain of large steepness evolved into a series of three- 
dimensional crescentic spilling breakers (class 11), and was followed by a transition 
to a two-dimensional modulated wavetrain (class I). One can speculate that the 
growth of the crescentic waves and their disappearance are one cycle of a recurring 



300 M .  Stiassnie and L. Sherner 

phenomenon. In  a recent study (Shemer & Stiassnie 1985), we proved analytically 
that a wavefield composed of a Stokes wave and two most unstable class I1 
disturbances does also undergo a kind of Fermi-Pasta-Ulam recurrence. 

1.3. Coupled instability 
I n  two papers Su & Green (1984,1985) suggested the following interpretation for their 
recent experimental results: under the initial action of class I instability a wavetrain 
with moderately high steepness (a,L, > 0.12; a,, k,, are the amplitude and wave- 
number respectively) may undergo a considerable modulation in its envelope ; sub- 
sequently, a few of the waves in the middle of the maximum modulation will have 
local wave steepness high enough to trigger class I1 instability. They added that for 
high enough initial steepness (a ,  Lo > 0.15) these locally steeper waves lead to three- 
dimensional wave breaking. 

The main goal of the present work is to provide an approximate mathematical 
model for the coexistence and interactions of the two classes of instabilities, which 
appear to be relevant for moderately steep waves. A theoretical study of these 
processes is pursued using the modified Zakharov equation. The essentials of the 
derivation of the modified Zakharov equation, pertinent to this study are given in 
$2 (for details see Stiassnie & Shemer 1984). In  our earlier studies (Stiassnie & 
Kroszynski 1982; Shemer & Stiassnie 1985) we analysed wave fields composed of 
three free waves, which was the smallest number required in order to model the 
relevant physical process and keep the mathematics manageable. For the present 
study of coupled evolution of class I and class I1 instabilities the smallest required 
number of free waves is five. The appropriate model for such a system is given in 
$3. One possible way to check the mathematical model is to calculate the total energy 
of the wave field, which should be constant in any non-dissipative medium. 

The details of the energy calculation are provided in $4 .  The results are presented 
in 55. The conclusions, drawn in $6, demonstrate the potential of the modified 
Zakharov equation as a tool for studying complex water-wave fields. 

2. Background 

with a free surface and infinitely deep bottom are: 
The equations governing the irrotational flow of an incompressible inviscid fluid 

VZ$ = 0 (2 < q(x ,  t ) ) ,  ( 2 . l a )  

(2.1 b ,  c )  

IV$l-O (Z-t- a), (2.ld) 

where $(x, z ,  t )  is the velocity potential, q(x ,  t )  is the free-surface elevation and g the 
gravitational acceleration. The horizontal coordinates are (xl, x2) = x, the vertical 
coordinate z is pointing upwards, and t is the time. 

Given an initial condition in terms of q(x ,  0 ) ,  $(x, q ( x ,  O) ,  0 ) ,  one can transform the 
problem into an evolution equation in the Fourier plane 
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The new dependent variable B(k, t )  represents the free components of the wave field. 
I,, I,, . . . , are integral operators representing quartet, quintet, . . . , nonlinear 
interaction, respectively. 

The leading term on the right-hand side of (2 .2)  was first derived by Zakharov 
(1965), and the higher-order term I, was obtained in Stiassnie & Shemer (1984): 

+ 7-J% 2, 3, 4 B: B,* B3 B, '0+1+2--3-4 ei(W+Wi+Wz-W~-Wp)t) dk, dk2dk3 dk,, (2 .3b )  
where we use a compact notation in whieh the arguments ki are replaced by the 
subscript i, with the subscript zero assigned to k.  w is related to k through the linear 
dispersion relation o ( k )  = (g1kl)a. The kernels !F2)(k, k,, k,, k3), U(2)(k, k,,  k,, k3, k,), 
. , . , as well as other kernels to appear subsequently, are given in Stiassnie & Shemer 
(1984). The asterisk denotes the complex conjugate. B(k,  t) is related to the Fourier 
transform (denoted by a hat) of ~ ( x ,  t )  and qP(x,t) = d(x ,~ (x ,  t ) , t ) ,  the velocity 
potential a t  the free surface, through b ( k ,  t ) ,  which is a kind of generalized 'amplitude' 
spectrum 

$(k, t )  = (G)' [ b ( k ,  t )  + b*( - k, t ) ] ,  

i 
@(k , t )  = -i(&) [b(k , t ) -b*( -k , t ) ] ,  

( 2 . 4 a )  

(2 .46 )  

The quantities B', B", . . . , represent the bound components of the wave field, which 
are given in terms of B as follows: 

Second order 

Third order 

e i ( w + w , + w 2 + w 3 )  t +'t)l, 2 ,  3BT B , * B , * ' O + l + 2 + 3  w + w l + w 2 + w 3  ] dk, dk, dk,. 

(2.5a) 

(2 .5b )  
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ei(w - w ,  - w 2 - w 3  -04) t 

B"' = -JJSL0 -02 { 'h6f)l, 2 . 3 ,  4 Bl B2 B3 B4 '0 -1-2-3-4 w -wl - w 2  -w3 -w4  

ei(w+wl-w,-w3-w4) t 
- U'2) 

- U(3) 

w + w1 - w2 - w3 - w4 

w + w1 + w2 - w3 - w4 

+ ( '&:)I, 2, 3 ,  4 0, 1 ,  2 ,  3, 4)  B: B'2 B3 B4 ' 0  + 1 - 2 - 3 - 4 

e i (w + w, + w 2 - w 3  - w 4 )  t 

) B: B,* B3 B4 ' 0+1+2-3 -4  + ( ' t ) 1 , 2 , 3 , 4  0 , 1 , 2 , 3 , 4  

e i (w+  w1 +w, + w3 -w4)  t 

w + w 1 - t  w2 + w 3 - w . 4  
+ '?'I, 2, 3 , 4  B: B,* B3* B 4 ' 0 + l + 2 + 3 - 4  

ei(w + w1 + w2 + w3 +w,)  t ] dk, dk, dk3 dk,. + ' f ' 1 ,2 ,3 ,4  B: B,* B,* B:'0+l+2+3+4 w +w, + w2 +w3 + w4 
( 2 . 5 ~ )  

3. The evolution equations for a system composed of five free waves 

free components : 
In  the present study we restrict the discussion to wave fields which consist of five 

5 

+higher-order bound components. (3.1) 
n=1 

The wave (1)  is the leading component of the original Stokes wave, to be called 'the 
carrier'. The two couples (2 ,3)  and (4,5) were chosen to be the most unstable 
disturbances of class I and class I1 instabilities respectively. 

These most unstable disturbances were obtained by a linear stability analysis (see 
Stiassnie & Shemer 1984). The wavenumbers of these five waves are 

} (3.2) 
kl = ko( l ,O) ,  k2 = ko( l+pI ,O) ,  k4 = k0(1,5,qd3 

k3 = ko(l  -PI, 0) k, = ko( l ,  5,  -q1A 

The numerical values of p ,  and qII are provided by the linear stability analysis. 
The initial amplitudes and phase shifts of these waves are chosen to be as follows : 

The ' Stokes-corrected' frequencies Q, are given by : 

Q n  = Un+TnnnnlBn12+2 I: TnmnrnIB,n12* (3.5) 
m + n  

The variables B, are related to these quantities through 

(wn-Qn)dt+On 
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( 3 . 7 4  

+ (u!& + u%32 + uLti13 + UL:;,~ + u ~ L , ,  + uG\,,) B,* B, B, B, ei(Q+II) t ,  

(3.7e) 

where Q, = 2w,-ww,-w3, a,, = 3w1-w4-w0,. (3.8) 
From (3.6), (3.3) and (3.4): 

B5(0) = R - eIIa, expi(B,,). (3; 

( 3 . 9 4  

(3.9b) 

(3.9c) 

(3.9d) 

(3.913) 

The system of 5 nonlinear complex ordinary differential equations (3.7) together with 
the initial values (3.9) form the evolution problem to be studied. 

In  Shemer & Stiassnie (1985) we looked a t  two degenerated forms of the system 
( 3 . 7 ) .  The first dealt with class I instabilities only (B, B, = 0) ,  and the second was 
restricted to class 11 instabilities (B2 = B, f 0). For each of these cases the system 
(3.7) is reduced to a system of 3 complex equations. I n  Shemer & Stiassnie (1985) we 
transformed these reduced systems into one real equation in a new variable and solved 
the resulting equation analytically, in terms of Jacobian elliptic and related functions. 
We have not succeeded in finding a similar trick for the more general case considered 
here, and therefore solve the system (3 .7)  numerically, using the Gil form of the 
Runge-Kutta method (James, Smith & Wolford 1977). 

The numerical scheme is checked by comparing the results obtained for different 
integration steps. All our numerical results are accurate to five significant digits. 
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Another approach for checking the mathematical model and the numerical results 
is to calculate the total energy of the wave field, as elaborated in the following section. 
Note that this 'energy approach' would still hold when more than 5 free components 
are included. 

4. Energy balance 
The exact equations of motion for water-waves (2.1) form a Hamiltonian system 

as shown by Zakharov (1968), Miles (1977) and Milder (1977), and the total energy 
of the entire wave field is conserved. The average energy density, taken over the 
(q, z,)-plane, is given by: 

Any exact solution should give h = constant, for all t (as long as the waves do not 
break). When a truncated version of (2.2) is used, one can expect (4.1) to yield 
h(t) ,  which is only approximately constant. From (2.4a), (2.4b) and (2.5) and the 
assumption of five free waves: 

(4.3) 

where 8, = B,, and xn = -wn for n = 1,2,  . .., 5 (the five free waves). For 
n = 6,7,  ..., 3705,8, and xn are given in the Appendix. The total number of waves 
considered (3705) results from the structure of (2.5a, b , c ) ;  (3705 = 5 + 3 * 5 2 + 4 * 5 3  
+ 5 * 5 4 ) .  

Substituting (4.2) and (4.3) into (4.1) gives: 

3705 3705 

m-I n-1; kn--km 
+I: x (w, + x,) Re {8,8, ei(Xm+Xn) t> + A ,  + A,,  ( 4 . 4 ~ )  

where A, and d5 are terms of order (ao k0)4 and (ao k0)5 respectively, given by: 

5 5 

~4 = i Tmnmn~Brn~2~Bn~2+ ~ n n n n ~ n 1 4  
71-1 m-I, m =k n n-1 

+ (2T1123 + T 2 3 1 1 +  T 3 2 1 1 )  Re {(B:), B, B3 eiRI '1, (4.4b) 

A ,  = (2ug\45 + Uit\ll + Us",',,,) Re {(B:) B, B, eiQII t> 

+ 2( Uf$+45 + U#45 + U2\45 + Ugi45)  Re {B: B,* B,* B, B, ei(nII-saI) t>  

+ ( "$i\.25)123 + u1i\32 + /'!i)213 + uj25)31 + + uiE\,l + tlgi2.3 + Ugi32 

Ui"a213 + uii)231 + U$iil, + U$ii,,) Re {B: B,* B, B, B3 ei(QI-nIx) t ) .  ( 4 . 4 ~ )  

Note that the conditions that k ,  = k ,  or k,  = - k, drastically reduce the number 
of pairs which contribute to the average energy density. The actual number of 
contributing wave pairs turns out to be somewhat smaller than 1000 out of a total 
of 3705, possible combinations. 
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In addition to the contributions of A ,  and A ,  the accuracy of ( 4 . 4 ~ )  is related to 
the accuracy of the ‘amplitudes’ 8,. To obtain h accurate to order (a, k,)2, 8, should 
be accurate to order (a, ko) ,  thus all the 8, in ( 4 . 4 ~ )  except for the first five are set 
to zero. One can show that the restrictions k, = +k, exclude the possibility of 
products having the order ( k , ~ , ) ~ .  This means that the result from ( 4 . 4 ~ )  obtained 
by using only the five free waves is accurate to order (k ,  and has an error of order 
(k ,  a,),. We denote this result by h,. 

For higher-order corrections one has to include the bound waves. To obtain h, 
(h accurate to order (a, k,),) the first 5808, are required; these include B, B’, B and 
yield products of B with B and B’ with B’. h5 is obtained when all the 37058, are 
included; thus adding products of B with B and B’ with B“. Note that in order to 
obtain an accuracy higher than h, one has to add higher-order terms on the right-hand 
side of (2.2). 

5. Results 
5.1. Coupled evolution 

In  figure 1 we show the variation with time of the amplitudes of the free waves for 
class I instability (in the upper row), class I1 instability (in the middle row) and the 
coupled instability (in the lower row). The results are for three different Stokes waves 
having initial steepness k,a,  = 0.130 (in the left column), k,a, = 0.227 (middle 
column), and k,a,  = 0.366 (right column). For each of these three Stokes waves we 
introduce initial disturbances a t  the most unstable class I and class I1 modes (see 
3.2) defined by the following parameters : 

ko a, PI PI1 

0.130 0.22 1.62 
0.227 0.34 1.51 
0.336 0.47 1.30 

The curve (1) is for the carrier amplitude, the curves (2), (3) are those for the 
amplitudes of the most unstable class I disturbances and the curves (4), (5) which 
coalesce for the present problem, are for the most unstable class I1 disturbances. All 
nine figures have a duration of about 400 carrier periods. Both single-class evolutions 
are periodic and show a substantial decrease in the recurrence period with the increase 
of the initial carrier steepness. More details about single-class evolution can be found 
in Shemer & Stiassnie (1985). 

The results for the coupled evolutions are non-periodic; this can also be seen from 
figure 2, which gives the power spectra of a l ( t )  for k,a,  = 0.130. We have chosen to 
demonstrate the results for k, a, = 0.130 rather than those for higher steepness (which 
are qualitatively similar), since this enables us to avoid the complications involved 
in the question of wave breaking. According to experimental results of Su & Green 
(1984) no breaking is expected as long as a, k,, < 0.15. 

The spectra were calculated from records having a duration sixty times longer than 
that in figure 1.  These records are divided into four equal parts, each having 1024 
data points. The curves in figure 2 are the average of four power spectra each 
calculated from one of these parts. The periodicity of the single-class evolutions 
manifests itself in the distinct equally spaced peaks in figure 2 (a  and b ) .  In figure 2 ( c )  
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k, a, = 0.227 k, a, = 0.336 
h 

hdO) 
- 

1 

Class I 

Class 11 

Coupled 
( I+II )  

FrauRE 1 .  Dependence of the evolution process on the carrier steepness (k, a,) for = qI = 0.1 
and 8, = 011 = -+TI. 

one can identify only the trace of the first class I peak (figure 2 a ) ;  there is no 
identifiable trace of the class I1 peaks. The spectra for steeper waves are qualitatively 
similar. The above observation as well as the fact that the amplitudes a,2, a3 are in 
general larger than a4, a5 (see lowest row of figure 1) can lead to  the conclusion that 
class I instabilities dominate the coupled process. From the point of view of the 
observer of the water surface this conclusion may be somewhat misleading, since the 
three-dimensional class I1 modes seem to catch the observer’s eye more than the 
two-dimensional class I modulations. This is demonstrated in figure 3, which is a 
picture of the free surface taken at the instant marked with an arrow in the lower 
row of figure 1. 

In  figure 4 we present the coupled evolution for koao = 0.130,8, = O,, = -in, and 
for four different couples of initial relative amplitudes of the class I and class I1 
disturbance modes (E,, eII, see (3.3)). A general dominance of class I over class I1 is 
observed. I n  one of the cases (eI = 0.1, eII = 0.01) class I1 is suppressed by class I 
throughout the evolution, which covers about 1200 wave periods. A similar phenom- 
enon appears for cases with higher values of koao. Whenever class I1 disturbances 
take an active part, their maximum amplitude attained in the course of evolution 
is essentially independent of the size of the initial disturbance. On the other hand, 
the time required to attain this maximum depends significantly on eI and eII. The 
class I dominance also manifests itself by the fact that  the amplitudes of class I1 
modes (4,5) oscillate with the characteristic frequency of class I modes ( 2 , 3 ) .  

In  order to have a closer look at the parameters which influence the growth or 
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FIGURE 2. Power spectra of the amplitude of the carrier a l ( t )  for koao = 0.130. (a) class I, 
eI = 0.1, 8, = -$; (b) class 11, eII = 0.1, 011 = -in; (c)  coupled, eI = eII = 0.1; 8, = 011 = -in. 

suppression of class I1 disturbances we study the coupled evolution process for a fixed 
value of e, = 0.1 and varying values of el,, and of the initial phase shifts BI and tII1. 
We demonstrate some representative results in figure 5 (for koao = 0.130) and in 
figure 6 (for koao = 0.227) .  Both figures have two columns, the left one for 4 = in 
and 4, = -in; and the right column for 0, = -+x and B,, =f ax. These phase values 
are chosen since they correspond to the two possible extreme values of the initial 
growth rates (see Shemer & Stiassnie 1985). For koao = 0.130 (see figure 5 ) ,  the 
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FIQURE 3. Free-surface elevation for koao = 0.227, eI = eII = 0.1, O,, = O,, = -in, at w, t  = 150. 

- 976 h, 
a0 h m  

1 
1 

0 
0 7500 0 7500 

s I = O . O 1 ; E I I = O . l  EI = EII  = 0.1 

0 "1' 7500 0 7500 

FIQURE 4. Dependence of the evolution process on the amplitudes of the initial disturbances eI 
and e,, for k,ao = 0.130, 0, = 011 = -in. 

evolution pattern does not seem to be sensitive to the initial phases, and depends 
primarily on eII. For eII = 0.02 and lower values, class I1 instabilities do not grow. 
For eII > 0.025 the class I1 disturbances eventually attain their maximum value. The 
details for this growth depend on the initial phases; whenever class I1 disturbances 
start growing a t  t = 0 they attain their maximum faster. 

For koao = 0.227, as in the previous case, no significant class I1 activity appears 
as long as eII < 0.02. For eII > 0.02 a profound difference between the two phases 
can be observed in figure 6, for 8, = - OII = in class I1 modes scarcely participate in 
the evolution process, whereas for 19, = -OI1 = -in these modes are much more 
active. For OI = -OI1 = -in a small increase in eI1 changes the pattern significantly 
(see right column in figure 6). Note that the influence of the initial phase shifts for 
koao = 0.227 is opposite to that observed for koao = 0.130; for koao = 0.227 class I1 
disturbances develop faster when they initially decrease. 

5.2. Energy conservation 

The uppermost curves in figures 1 and 4-6 represent three approximations of the 
average energy density, i.e. h,, h, and h,. 
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- an 8, = -f?II = +in hn 8, = -OII  =-in 
a, h,o 

1 

1 

€11 = 0.02 

0 
10 000 0 

w1 f 10000 0 "I* 

0 "1 f 10000 0 10000 

FIQTJRE 5. Dependence of the evolution process on the amplitude of the initial disturbance eII 
and the phase angles 8, and BII for koao = 0.130, eI = 0.1. 

an e, = -eII = -in - 
0 0  

1 

EII = 0.02 

0 0 

eII = 0.03 

0 " I t  3000 0 "1 f 3000 

FIQURE 6. Dependence of the evolution process on the amplitude of the initial disturbance eII 
and the phase angles Or and O,, for koao = 0.227, eI = 0.1. 

Class I interaction: One can see that the contribution of the energy terms of the 
order (k,a0)4 leads to a considerable improvement in the conservation of the 
calculated energy in the evolution process, and h, does not deviate practically from 
a horizontal curve, with the exception of the highest amplitude considered. The 
higher-order h, curve does not differ from h,. 

Class I1 interaction: The middle row of figure 1 shows that the addition of the 
energy terms of the order (k, aO), changes only the 'mean level' of the energy density. 
In  order to obtain improvement in the energy conservation one has to take into 
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account higher-order (k, terms. Note that these terms are not necessarily positive 
and the h, and h, curves intersect. 

Coupled (class I + class 11) interaction : For the lowest amplitude considered 
(k, a, = 0.13) the curves h, and h, hardly differ from each other and from the horizontal 
straight line, giving an improvement compared to h,. For k, a, = 0.227, h, and h, give 
considerably better results than h,, but some deviations from a horizontal line are 
seen. The deviations in h, are considerably smaller than those in h,. At even higher 
amplitude, k,a, = 0.336, h, is still better than h, but it seems that the present order 
of approximation is not sufficient. 

6. Concluding remarks 
The Zakharov equation, first derived by Zakharov in 1968, and the modified 

Zakharov equation (Stiassnie & Shemer 1984), are two consecutive approximations 
of the classic water-wave problem, see (2.1). In  the derivation of these equations 
certain assumptions, as well as some rather tedious algebra are involved. The 
accuracy of these equations for short-time predictions was tested in Stiassnie & 
Shemer (1984), where the results of a linear stability analysis were found to agree 
with the exact solution by McLean (1982). In  the present paper we extend our analysis 
to long-time processes. To the best of our knowledge, there is no published theoretical 
work dealing with processes similar to those considered here. Thus we examine the 
validity of our solutions by resorting to energy considerations. Since the Zakharov 
equations are approximate models of a Hamiltonian system, one expects that they 
conserve energy to their respective order. The present results indeed indicate that 
the original Zakharov equation conserves energy with a relative error of O(e3) ,  while 
the modified Zakharov equation yields a relative error of O(e4), in the averaged energy 
density. Note that the conclusion of Yuen & Lake (1982 p. 196) that the Zakharov 
approximation does not conserve energy stems from the fact that they refer to h, 
(see our (4.5)) and do not take into account the higher-order approximation. 

Another way to assess the relevance of the obtained solution to real water-waves 
is to compare our predictions with experimental observations. The available exper- 
imental results, Su & Green (1984, 1985), do not provide all the details regarding the 
initial noise level necessary for quantitative comparison. However, the general 
pattern of our theoretical results is similar to their experimental observations. In  all 
the cases considered here, class I instabilities are dominant throughout the initial 
stages of evolution (note that the extent of the experimental facility corresponds to 
our w1 t < 1000). Su & Green (1984) suggest that class I modulations, which start first, 
trigger the class I1 instability. While our approach does not support the trigger 
mechanism one can see from most of the numerical results (see figures 4, 5 and 6) 
that significant class I1 activity initially appears to accompany high levels of class 
I disturbances. In  contrast to their reasoning, our results indicate that whenever the 
initial level of class I disturbances is substantially higher than that of class 11, ,:lass 
I wave components seem to suppress the three-dimensional (class 11) compor,ents. 
These results contradict the hypothesis of the trigger mechanism. Figures 5 and 6 
show that the conditions for the above suppression also include the initial phase 
angles of the various disturbances. 

For extremely steep waves the water surface becomes three-dimensional even in 
the initial stage, see figure 1 ;  this fact is in agreement with Su (1982) and Su et al. 
(1982). Their experimental observations show that in these cases the waves break 
soon afterwards. 
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Appendix 

31 1 

n 
Second order 
n = 5 + 5 ( j - - l ) + k  

n = 3 0 + 5 ( j - l ) + k  

n = 5 5 + 5 ( j - l ) + k  
Third order 
n = 80+25( j - -1)+5(k- I )+1  

n = 205+25( j - l )+5(k- l )+E 
n = 330+25( j - -1)+5(k- l )+1  

n = 455+25( j -1)+5(k-1)+1 
Fourth order 
n = 580+ 125(j-  1) +25(k- 1) +5(Z- l ) + m  

kn 

‘ j  + kk  

- k j + k k  

-kj -kk 

k j + k k  + k, 

-k, + kk + k,  
-kj-kk + k,  

-k, - k,  - k, 

k ,+k ,+k ,+k ,  

n = 1205 + 125( j - 1) + 25(k - 1)  + 5(E- 1 )  +rn 

n = 1830+ 125(j-  1) + 25(k- 1) +5(Z- 1) + m  

- k, + k ,  + k ,  + k ,  

- k j - k k  + k,  + k ,  

n = 2455+ 125( j -  1) +25(k- 1) +5(Z- 1) +n -k ,  -kk -k ,  + k ,  

n = 3080 + 125( j  - 1) + 25(k - 1) + 5(Z- 1) + rn - kj  - k,  - k, - k ,  

Xn 

-w, -lok 

w j  + w t  

- w, - W k  - 0, 

W , - W k - W ,  

w j +  W k  -wl  

01, + W k  + w ,  

- wj -wk -w,  -w,  

w j - w k  

w, -wt -w,  -”, 

W j + * l r  - w l  -w,  

wj + w ,  + w ,  -lo, 

wj +w,  + w ,  + w ,  

TABLE 1. n = 5 , 6  ,..., 3 7 0 5 ; j , k , l , m =  1 ,2 ,3 ,4 .5 .  

Note that for a few cases where the expression in the denominator of 8, in table 1 
is of order (ko uo)2 and which correspond to near resonance conditions, 8, was taken 
to be zero: this is in accordance with the definition of B and B given in Stiassnie 
& Shemer (1984). All the kernels are given in the above-mentioned paper except for 
D ( l ) ,  /77(4) and 8(5). It turns out that the terms which include O ( l )  and D(5) do not 
contribute to the final results in the present paper. The expression for 17(4) is: 

0 3 - 4  + 0 4  - w 3  0 3 - 4  + w 4  - w 3  
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